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Particle emission in the de Sitter universe for massless fields 
with spin 

Daksh Lohiya and N Panchapakesan 
Department of Physics and Astrophysics, University of Delhi, Dehli 110007, India 

Received 21 June 1978 

Abstract. The thermal flux emitted by a de Sitter universe due to interaction with massless 
fields with spin is calculated by examining the field equations of these fields. The field 
equations are obtained by perturbing the metric with the various fields and obtaining 
linearised equations. The expression for the power radiated indicates the absence of 
spin-half particle emission. 

1. Introduction 

The suggestion by Hawking ( 1974) that black holes and other event horizons such as 
those in the de Sitter universe (Gibbons and Hawking 1977) may emit thermal radiation 
has been an exciting development in recent years. In an earlier work (Lohiya and 
Panchapakesan 1978) we examined the thermal flux of scalar particles in a de Sitter 
universe. In this paper we derive expressions for the thermal flux for fields with spin. 
Besides electromagnetic (spin-1) we also consider the gravitational (spin-2) and the 
neutrino (spin-;) fields. This involves obtaining and solving linearised field equations 
for various spin fields in the de Sitter metric. 

In obtaining the field equations we use the formalism of Newman and Penrose 
(1962), and following the method of Teukolsky (1973) we obtain linearized field 
equations. The partial differential equation is also separable in  this case and the 
resulting radial equation is used to obtain the absorption coefficient for waves incident 
on the horizon. 

In 5 2 we describe the de Sitter metric in the Newman-Penrose formalism and 
obtain the field equations for spin-2,l and 4 in the same formalism by using the method 
of perturbations developed by Teukolsky (1973) in the case of black holes. 

In 5 3 we discuss the separation of variables of the field equation and obtain the 
equation for the radial coordinate. The equations for all the spins can be combined and 
written in a generalised radial equation. 

In § 4 we calculate the absorption coefficient from the radial equation. We follow 
the method used by Page (1976) and determine the solution valid far away from the 
horizon and compare its ingoing and outgoing parts. We comment briefly on the results 
in § 5. 
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2. Field equations 

The conventional form of the de Sitter metric is 

ds2=[1  -(r2/a2)]dt2-[ l  - ( r 2 / a 2 ) ] - ’ d r 2 - r 2 ( d 0 2 + s i n ’  O d42)  (2.1) 

where a is related to the cosmological constant A and scalar curvature R by R = 4A = 
12/a2.  

We find it convenient to perform the calculations in the t’, r, 8, 4 coordinates. where 

(2.2) 

(2.3) 

A special choice for the null tetrads which simplify the spin coefficients in these 
coordinates is 

t’ = t + r* = t u  In[(a + r ) / (a  - r)] + t. 
We have 

ds2=[1- ( r2 /a2) ]dv2-2  dt’ dr-r2(d02+sin2 6 d42) .  

I” = [O, 1 ,0 ,0 ]  

n’=[-l, -3[1-(r2/a2)],0,0] (2.4) 

1 1 i  -1. m” =- [o, 0, -, 
J2 r r sin 8 

Defining the Newman-Penrose (NP) coefficients as 

it is not difficult to show that the only non-vanishing spin coefficients for the unper- 
turbed metric are 

2 p = -a =cot 0/2J2r  

CL = -[1-(r2/a2)]/2r 

y = -r/2a 

p = --1/r. 

Although the Ricci tensor in the de Sitter space-time is non-zero, all its tetrad 
components can be easily seen to vanish by using the defining properties of the tetrad, 
namely In = -mm = 1 ; other products are zero and R,, = As,.. (This is seen to imply 
that the Goldberg-Sachs theorem holds for empty space-times with a non-vanishing 
cosmological constant along the lines given by Newman and Penrose (1962).) 

Using the NP equations with equations (2.4) and (2.5) the unperturbed de Sitter 
space-time turns out to be a type-0 space-time-with all the Weyl-Tensor tetrad 
components vanishing. The de Sitter-Schwarzchild space-time, given by 
ds 2 =[I -(2m/r)-(r2/u2)]dr2-[1 -(2m/r)-(r2/a2)]-’  dr2-r2(d02+sin2 6 d4‘) 
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is, however, a type-D space-time with the non-vanishing component of the Weyl- 
tensor projection being 92 = -m/r3. It is therefore convenient to consider the de Sitter 
space-time as the limit of a type-D space-time as m approaches zero. The analysis of 
Teukolsky (1973) can be taken over for our case as indicated below. 

We perturb the geometry by expressing all the NP quantities as a sum of the 
unperturbed and the perturbed parts, e.g. 

D=DO+DP 

& = + y = & = $ ! +  & o  

t!,~~ = q: + q;, etc. 

r 0 = ~ O = A 0 = ~  0 0 0 0  = r  =(T = T  =o.  
The unperturbed quantities satisfy 

(2.6) 
Following Teukolsky (1973) we then have 

[ ( D - ~ E  + E -4p -b)(A-4? + p )  - ( S  + ii -6  -3p -47) (8+ ii -4a) -3?\1]1,G (2.7) 
= source terms 

and 

[ (A+3y - 7 +4p, + /.'i,)(D + 4 ~  - p )  - (8- .T +p+ 3a + 4 ~ ) ( 6  - T +4@) - 3Q2]1,bz 

= source term. 

Dropping the superscript p in our case, the equations reduce for the source-free case to 

(2.8) [ (D  - 5 p ) ( A - 4 ~  + p )  -(a + 2a)(6-44]qO = 0 

and 
[ (A+2y +5p,)(D - p ) - ( 8 +  2a)(S -4a)]$4 = 0 

with 
D = a/ar A = ( - a / a v ) - i [ l  -(rz/laz)] a lar  

and 
(2.9) 

1 i a  

The equation (2.8) is the field equation in NP form for a spin-2 field in the linearized 
approximation. 

In the case of electromagnetic and neutrino field perturbations we neglect the 
change in the background geometry and the equations of Teukolsky (1973) reduce in 
our case to 

[(D - 3p)(A+p - 2y)  - 6 ( 6 -  2a)]@O = 0 
and 

[(A + 3p) (D - p )  - 8 ( S  + 2p)]@ = O 

In the case of a neutrino or spin-4 massless field, we get 
for the electromagnetic field. 

[ (D  -'&)(A- Y + C L ) - ( S  - - ( Y ) ( ~ - u ) ] x ~  = 0 
and 

[(A-y + 2 p ) ( D  - p )  - (&-a)(& -a)]xi = 0 

along with equation (2.9) in all cases. 

(2.10) 

(2.11) 
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3. Separation of variables, the general radial equation and the boundary conditions 

The field equations (2.8), (2.10) and (2.11) separate out just as in the case of the Kerr 
black hole. We use the spin-weight spherical harmonics p Y y  of Goldberg eta1 (1967). 
The quantity p takes the values *s corresponding to different helicity states of the spin-s 
field where s can take values 0, i, 1 and 2. The pY;" satisfy the equation 

(3.1) 

We find that all the massless fields satisfy a general equation in the variables U, r:  
where m is the azimuthal quantum number and 12 s. 

a' ( s + p + i )  a i 
2r2 

+ 

where ,Y;"+(r, U )  is the general solution. 

detector sensitive to positive frequencies with respect to time t. We therefore write 
We wish to have the radial equation in f, r, 8, 4 coordinates corresponding to a 

$(U, r) = exp(-iwt)R(r) 

= exp[-iw(v -r*)]R(r) (3.3) 

and find for the radial equation (using z = r /a )  

z ~ ( I - z ~ ) ~ R , , ,  - [ 2 ( p + 1 ) ~ ~ - 2 ( s + i ) ( i - ~ ~ ) ~ ] ( i  - z ~ ) R , ,  

-{(1 - z 2 ) [ ( 1 - s ) ( 1 + s  + l ) + ( s + p +  l ) ( s + p + 2 ) z 2 ]  

- (waz)'+ 2 i a w z p ) ~  = 0. (3.4) 

The conformally coupled scalar field has been discussed earlier (Lohiya and 
Panchapakesan 1978), where the nature of the boundary condition to be imposed has 
also been discussed. We recall briefly the following conditions. 

We define (Gibbons and Hawking 1977) 

r = a ( i +  UV)(1- UV)-' exp(2tla) = - V/U 

which correspond to 

v = and U = T ~ - " / "  

with U = t - r* and U = t + r*. 
The Gibbons-Hawking vacuum is defined such that we have e-'"" at the future 

horizon which is a function of U = t - r* only and corresponds to outgoing boundary 
conditions. On the past horizon we have functions which are of positive frequency with 
respect to U and this is known to give the Hawking radiation (Unruh 1976, Lohiya and 
Panchapakesan 1978). 

Accordingly, we impose the outgoing boundary condition at the future horizon. 
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4. Absorption probability and thermal flux 

The exact solutions of the radial equation (3.4) seem difficult to find. We can, however, 
determine the absorption probability at low frequency by using a solution obtained by 
matching the solution valid at the origin and the solution satisfying the outgoing 
boundary condition at the future horizon (Page 1976). To this effect, we note that near 
the origin, z << 1, equation (3.4) reduces to 

R = O .  
2(s  + 1) R,: + ( (wa)  R.zz + ~ 

2iwap ( I  - s ) ( l  + s + 1) 
Z 2  Z Z 

This has a general solution of the form (Morse and Feshbach 1953) 

R = A  ekZz'-SIF1(l + 1 + p ,  21 + 2 ;  - 2 k z )  

+B e k ~ Z - I - r - l  1F1(-l + p ,  -21; - 2 k z )  

(4.1) 

(4.2) 

where k = iaw. The constants A and B are evaluated by matching the solution 
satisfying outgoing boundary conditions at the horizon. 

To discuss the solution near the horizon ( z = l )  we define a z* coordinate by 
dz* = dz/( l  - z 2 ) .  We also change to the function f ( 1 ,  r)  defined by R(1, r)  = f ( l ,  r)/z.  
The equation (3.4) reduces, near z = 1, to 

f,z * =  * + f , :  * ( - 2 p )  - ( k  + 2pk I f  = 0 (4.3) 

which gives two independent solutions 

f l  and f 2  correspond to incoming and outgoing boundary conditions at the horizon 
respectively. 

To get the solutions with the desired behaviour at z = 1 we change to x = l / z  and 
define g ( x )  = (x2 - l)-'"f(x). The factor (x2 - 1)-'12 will behave like e''' for z -- 1. The 
function g ( x )  satisfies, near the origin, the equation 

(4.5) 
2 

( 1 - x  ) g , , , - 2 ( c L + l ) x g , ~ + ( ~ - c L ) ( ~ + c L + ~ ~ g = o  

where p = c - s. 
The two independent solutions to this equation are (Bateman 1953) 

with c1 = k and 

c1 and c2 are fixed by the behaviour at the horizon and by the known exact solutions for 
the scalar case (Lohiya and Panchapakesan 1978). 
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We match the outgoing solution equation (4 .7 )  with equation (4.2) as z + 0 to 
determine the constants A and B and find 

(4.8) 

It is convenient to drop one of the coefficients s or p by defining a new function 
(Teukolsky and Press 1974) given by 

fie" ( p  = s) = ( p  = s) 
f ; ' " ( p = - s ) = z  fi ( p = - s ) ( = p  f; ). 2s Id -2s Id 

Then 

R = f / z + A e k ' z ' - P 1 F 1 ( 1 + l + p , 2 1 + 2 ; - 2 k z )  

+ B ekzz-'-p-* 1Fi(-l + p ,  -21; - 2 k z ) .  

(4.9) 

(4.10) 

The asymptotic form of the confluent hypergeometric function enables us to put the 
solutions in the form (for aw >> rw >> 1 )  

R - Y,, e - k z / z 1 + 2 p  + Yout ekz/z  
where 

(4.1 1)  

( k ) P - ' - 1 2 P r ( f  + 1)  k"PT(-p)2p  
r(-i -,mi+ 1 +p)-r(-i+p)r(i + I - ~ ) '  You, = 

Following Teukolsky and Press (1974) the absorption probability r is given by 

1 - r = I Yinzm/ Youtzoutl (4.12) 

where tin, zout are the same as Y,,, You, with p replaced by - p .  Defining 

r(-qr(i + 1 +r(-i - k - 3 4  
r(-/ - + i)r(i - k - 3s + 1 )  

A *  = 

we find 
[ 1 +  i ( - l ) ' ( ~ w ) ~ ' ~ ' A 1 ] [ 1 +  i ( - l ) ' ( ~ w ) ~ ' + ~ B J  
[ l  -i(-l) '(~w)~"*A2][1- (-l)'i(aw)2'+1B21 

1 - r =  

The power spectra are given by the relation 

d E  (21 + l)(aw)T(l, w )  
a-- -1 

dw dt l ,p  ( e x p ( 2 ~ a w )  - 1 )  

where k&= 1 / 2 ~ a  is the Hawking temperature. 

(4.13) 

(4.14) 

(4.15) 
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5. Discussion 

The thermal flux is given by equations (4.14) and (4.15). It can be verified that they 
reduce to the previously derived result (Lohiya and Panchapakesan 1978) for the scalar 
case. 

For the integral spins (s = 1, 2 )  r-0 for the lowest 1 value, unlike the scalar case 
where for 1 = 0, r was finite. The expression for the emitted flux is finite and well 
behaved for the cases s = 1 and 2 .  

The case of half-integral spin s = is, however, quite different. As both I and s are 
half-integral r(-I - s) diverges in equation (4.14) and makes A = A2 = B1 = B2 = 0. 
This leads to r = 0 and hence there is no thermal flux in the massless fields of spin-half. 
This is in contrast to the case of the black hole calculated by Page (1976). The physical 
significance of the absence of spin-half thermal radiation is not clear to us and needs 
further investigation. 

As all open universes ultimately tend to the de Sitter universe, the features observed 
in this investigation may have importance in cosmology. 

One of the referees has suggested that the use of the Gibbons-Hawking and Unruh 
boundary condition on the past horizon requires further study. We are looking into this 
suggestion. 
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